FCD是发展异常的大脑区域,常常导致耐药性癫痫。手术通常用于治疗,然而,在MRI上找到病变是医生一直面临的问题,因为FCD的MRI扫描可能看起来正常。
(资料图片)
科学家们利用整个大脑的大约30万个位置来开发该算法,该算法利用MRI扫描测量皮质特征,如皮质/大脑表面的厚度或折叠程度。之后,根据模式和特征,专业放射科医生将例子分为患有FCD或拥有健康的大脑,作为该算法的训练数据。
根据发表在《大脑》杂志上的结果,该算法成功识别了队列中67%的病例(538名参与者)的FCD。
此前,有178人被宣布为MRI阴性,这意味着放射科医生无法检测到异常;然而,MELD算法能够在这些案例中的63%检测到FCD。
这一点特别关键,因为如果医务人员能够在脑部扫描中识别出异常,那么通过手术切除它就可能提供治愈。
共同第一作者Mathilde Ripart(UCL大奥蒙德街儿童健康研究所)说:“我们把重点放在创建一个可解释的人工智能算法上,并能帮助医生做出决定。向医生展示MELD算法是如何进行预测的,是这一过程的一个重要部分。”
共同第一作者Konrad Wagstyl 博士(UCL皇后广场神经学研究所)补充说:“这种算法可以帮助发现更多儿童和成人癫痫患者的这些隐藏病变,并使更多的癫痫患者被考虑进行脑部手术,从而治愈癫痫并改善其认知发展。在英国,每年大约有440名儿童可以从癫痫手术中受益。”
世界上约有1%的人口患有严重的神经系统疾病癫痫,其特点是频繁发作。在英国,大约有60万人受到影响。虽然大多数癫痫患者都有药物治疗,但20-30%的人对药物没有反应。在接受手术控制癫痫的儿童中,FCD是最常见的原因,而在成年人中,它是第三大原因。
此外,在脑部有异常但在MRI扫描中无法发现的癫痫患者中,FCD是最常见的原因。
共同第一作者,Helmholtz Munich博士说:“我们的算法能够自动学习,从数以千计的病人的MRI扫描中检测出病变。它可以可靠地检测出不同类型、形状和大小的病变,甚至许多以前被放射科医生漏掉的病变。”
共同第一作者Sophie Adler博士(UCL大奥蒙德街儿童健康研究所)补充说:“我们希望这项技术将有助于识别目前被遗漏的、导致癫痫的异常情况。最终,它可以使更多的癫痫患者接受潜在的治愈性脑部手术。”
这项关于FCD检测的研究使用了迄今为止最大的FCD的MRI队列,这意味着它能够检测所有类型的FCD。
MELD FCD分类工具可以在任何怀疑有FCD的3岁以上并有MRI扫描的病人身上运行。