首页 » 科技

锂硫电池研究新进展 特殊硫化物不会与碳酸盐电解质发生反应

2022-02-11 21:07:01 cnBeta.COM
A+ A-

研究配图 - 1:锂硫电池在碳酸盐基电解质中的放电示意图

通过利用硫的稀有化学相,研究人员得以防止电池中发生破坏性的化学反应,并且有望于未来的 EV 动力电池市场展现其巨大的性能潜力。

与镍、钴、锰相比,锂硫电池的一大前景,在于硫元素的储量相当丰富、成本足够低廉、且性能优势也更加显著(或数倍于当今的锂离子电池)。

研究配图 - 2:CNF 材料表征(来自:Nature Communications Chemistry)

但在投入商业化应用之前,科学家们还得攻克一个难关 —— 那就是形成所谓的多硫化物。

随着电池的运行,它们会进入于阴阳两极之间来回传输电荷的电解质溶液,并在那里发生化学反应,从而影响电池的容量和寿命。

研究配图 - 3:CNFs / γ-CNFs 相、及其表面特征

此前科学家们已经成功地将碳酸盐电解质换成了醚电解质,后者的最大特点,就是不会与多硫化物产生反应。

不过这也带来了新的问题,毕竟醚电解质本身具有高度的挥发性、且含有低沸点成分 —— 意味着若加热至室温以上,电池很可能迅速失效或熔化。

研究配图 - 4:γS-CNFs 的电化学表征

有鉴于此,德雷克塞尔大学(Drexel.edu)的化学工程师们,一直在潜心研究另一套解决方案 —— 从设计一种新的阴极开始。

据悉,新型阴极能够与当前已投入商用的碳酸盐电解质一同工作。其由碳纳米纤维制成,此前已被证明能够减缓多硫化物在醚电解质中的移动。

当然,想要验证新型阴极材料可与碳酸盐电解质完美协同使用,仍绕不开一些必须完成的工作。

研究配图 - 5:γS-CNF 的倍率性能和高负载分析

首席研究员 Vibha Kalra 指出:对于商业制造商来说,这是化解碳酸盐电解质应用难题的一个最佳途径。

他们的目标不是推动行业去采用全新的电解质,而是制造一种可在现有的锂离子电解质系统中工作的新型阴极。

研究配图 - 6:充放电循环后的 SEM / TEM 分析

研究团队先是尝试运用了一种被称作蒸汽处理的技术,以将硫束缚在碳纳米纤维网中、从而防止危险的化学反应,但遗憾没有取得预期的效果。

不过歪打正着的是,事实证明他们以一种意想不到的方式形成了硫结晶,并将之转变成了一种被称作“单斜伽马相硫”的物质(算是元素的一种轻微形变)。

研究配图 - 7:充放电循环后的 XRD / XPS 分析

这种硫化物的化学相,通常只能在实验室的高温环境、或自然界的油井中观察到。

但对科学家们来说,其最大的优势,就是不会与碳酸盐电解质发生不必要的反应,从而消除了形成多硫化物的潜在风险。

责任编辑:bH_03116

关键词: 科学探索 锂硫电池研究新进展 特殊硫化物不会与碳酸盐电

点击查看全文(剩余0%)

相关新闻